Representations and characterizations of weighted lattice polynomial functions
نویسندگان
چکیده
Let L be a bounded distributive lattice. In this paper we focus on those functions f : L → L which can be expressed in the language of bounded lattices using variables and constants, the so-called “weighted” lattice polynomial functions. Clearly, such functions must be nondecreasing in each variable, but the converse does not hold in general. Thus it is natural to ask which nondecreasing functions can be represented by weighted lattice polynomials. We answer this question by providing characterizations of weighted lattice polynomial functions given by means of systems of functional equations and in terms of necessary and sufficient conditions. We also consider the subclasses of discrete Sugeno integrals, of symmetric functions, and of weighted minimum and maximum functions, and present their characterizations, accordingly. Moreover, we discuss normal form representations of these functions.
منابع مشابه
Characterizations of discrete Sugeno integrals as polynomial functions over distributive lattices
We give several characterizations of discrete Sugeno integrals over bounded distributive lattices, as particular cases of lattice polynomial functions, that is functions which can be represented in the language of bounded lattices using variables and constants. We also consider the subclass of term functions as well as the classes of symmetric polynomial functions and weighted minimum and maxim...
متن کاملRepresentations and Characterizations of Polynomial Functions on Chains
We are interested in representations and characterizations of lattice polynomial functions f : L → L, where L is a given bounded distributive lattice. In a companion paper [4], we investigated certain representations and provided various characterizations of these functions both as solutions of certain functional equations and in terms of necessary and sufficient conditions. In the present pape...
متن کاملPolynomial Functions on Bounded Chains
We are interested in representations and characterizations of lattice polynomial functions f : L → L, where L is a given bounded distributive lattice. In an earlier paper [4, 5], we investigated certain representations and provided various characterizations of these functions both as solutions of certain functional equations and in terms of necessary and sufficient conditions. In the present pa...
متن کاملEEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملPolynomial Functions Over Bounded Distributive Lattices
Let L be a bounded distributive lattice. We give several characterizations of those Ln → L mappings that are polynomial functions, i.e., functions which can be obtained from projections and constant functions using binary joins and meets. Moreover, we discuss the disjunctive normal form representations of these polynomial functions.
متن کامل